Page 1023: in Scheme I, an arrow was accidentally drawn in a wrong position with the legend "ca. sixfold acceleration of the apparent allylation rate"; the correct diagram follows:

Tests of Pseudophase Model of Micellar Catalysis: Its Partial Failure [J. Am. Chem. Soc., 101, 1253 (1979)]. By CLIFFORD A. Bunton,* Laurence S. Romsted, and Gianfranco Savelli, Department of Chemistry, University of California, Santa Barbara, California 93106.

The caption to Figure 3 should read:
Figure 3. Hydrolysis of the acetals $\mathbf{2 a}, \mathbf{b}$ with added $\mathrm{HCl}: \Delta, \mathbf{2 b}$ and 0.05 M 1a; 4, 2b and 0.1 M 1a; O, 2b and $0.05 \mathrm{M} \mathrm{1c} ; \mathbf{2}, \mathbf{2}$ and $0.1 \mathrm{M} \mathrm{1c;} \mathrm{~b}$, 2a and $0.05 \mathrm{M} \mathrm{1c}$; $\mathbf{2 a}$ and 0.1 M 1c. The solid lines are predicted for the lower and the broken lines for the higher surfactant concentrations.

Deuterium-Induced Differential Isotope Shift ${ }^{13} \mathrm{C}$ NMR. 1. Resonance Reassignments of Mono- and Disaccharides ${ }^{1}$ [J. Am. Chem. Soc., 101, 1265 (1979)]. By Philip E. Pfeffer,* Kathleen M. Valentine, and Frederick W. Parrish, Eastern Regional Research Center, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, Philadelphia, Pennsylvania 19118.

In Table VI, column C-5, the entries for α-D-glucopyranuronate 15 a and β-D-glucopyranuronic acid 15 b should be transposed. In column C-6 the entries for α-D-glucopyranuronic acid 15 a and β-D-glucopyranuronic acid $\mathbf{1 5 b}$ should be transposed as well as the entries for α-D-glucopyranuronate 15a and β-D-glucopyranuronic acid 15b.
On "Anomalous" Selectivities in Electrophilic Aromatic Substitutions [J. Am. Chem. Soc., 101, 1337 (1979)]. By CIELO Santiago, K. N. Houk,* and Charles L. Perrin,* Departments of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and University of California, San Diego, La Jolla, California 92093.

The arrangement of footnotes may have led to the impression that C. D. Johnson supports the validity of the "selectivity principle" for electrophilic aromatic substitutions; quite the contrary is true (also see Johnson, C. D.; Rose, S.; Taylor, P. G. J. Org. Chem., 1979, 44, 753, and references therein), and we wish to correct this unintended implication.

Professor L. L. Miller brought to our attention a more recent reference on product ratios from electrochemically generated I^{+}iodinations (Miller, L. L.; Watkins, B. F. J. Am. Chem. Soc., 1976, 98, 1515). These data are $\log p_{\mathrm{f}} \mathrm{Me}^{\mathrm{Me}}=1.78$ and \log $\left(p_{\mathrm{f}}{ }^{\mathrm{Mc}} / m_{\mathrm{f}}{ }^{\mathrm{Me}}\right)=1.38$, so that point $\diamond-52$ now lies very close to the least-squares line shown in Figure $1 ; \log p_{\mathrm{f}} \mathrm{Me}$ is predicted to be 1.73 by the least-squares correlation.

Professor F. P. DeHaan has reported new measurements on acylations and sulfonations (DeHaan, F. P.; Corey, W. D.; Delker, G. L.; Baker, N. J.; Feigon, J. F.; Miller, K. D.; Stelter, E. D. J. Am. Chem. Soc., 1979, 101, 1336) which, like earlier data on ethylations (Carter, B. J.; Corey, W. D.; DeHaan, F. P. J. Am. Chem. Soc., 1975, 97, 4783) and benzylations (DeHaan, F. P.; Corey, W. D.; Anisman, M. S.; Ezelle, R. L.;

Margetan, J. E.; Miller, K. D.; Pace, S. A.; Pilmer, S. L.; Sollenberger, M. J.; Wolf, D. S.; J. Am. Chem. Soc., 1978, 100,5944), suggest that some of the other anomalous points in Figure 1 of our communication may be brought into agreement with the Brown-Stock selectivity relationship upon remeasurement of the data.

Electrochemical Studies on a Series of Manganese(III) Complexes Containing Symmetrical Pentadentate Ligands [J. Am. Chem. Soc., 101, 2311 (1979)]. By W. M. Coleman, R. R. Goehring, L. T. Taylor,* J. G. Mason, and R. K. Boggess, Departments of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, and Radford University, Radford, Virginia 24142.

The structure as given for Mn (NAPDPT) NCS is

However, the correct structure should be

Sex Pheromone of the American Cockroach: Absolute Configuration of Periplanone-B [J. Am. Chem. Soc., 101, 2495 (1979)]. By Michael A. Adams, Koji Nakanishi,* W. Clark Still, Edward V. Arnold, Jon Clardy,* and C. J. Persoons,* Departments of Chemistry, Columbia University, New York, New York 10027, Cornell University, Ithaca, New York 14853, and Centraal Laboratorium TNO, Delft, The Netherlands.

Page 2497, column 2, line 15: $C(4)-C(3)$ and $C(8)-C(9)$ should read $C(4)-C(3)$ and $C(8)-C(13)$.

Rational Synthesis of Unidimensional Mixed Valence Solids. Structural, Spectral, and Electrical Studies of Charge Distribution and Transport in Partially Oxidized Nickel and Palladium Bisdiphenylglyoximates [J. Am. Chem. Soc., 101, 2921 (1979)]. By Martin Cowie, Alain Gleizes, Gregory W. Grynkewich, Davida Webster Kalina, Malcolm S. McClure, Raymond P. Scaringe, Robert C. Teitelbaum, Stanley L. Ruby, James A. Ibers,* Carl R. Kannewurf,* and Tobin J. Marks,* Department of Chemistry, Department of Electrical Engineering, and the Materials Research Center, Northwestern University, Evanston, Illinois 60201, and the Physics Division, Argonne National Laboratory, Argonne, Illinois 60439.

There are several typographical errors which in no way affect the results or conclusions. In the abstract, the fifth line from the bottom should read: "(chain) direction is as high at $30^{\circ} \mathrm{C}$ as $1.1 \times 10^{-2}\left(\mathrm{Ni}(\mathrm{dpg})_{2} \mathrm{I}\right)$ and $4.7 \times 10^{-4}(\Omega \mathrm{~cm})^{-1}$ $\left(\operatorname{Pd}(\mathrm{dpg})_{2} \mathrm{I}\right)$. Iodination brings about"

In eq $11, h$ should be \hbar.
In Table XII, the mean free path for $\mathrm{Ni}(\mathrm{dpg})_{2} I$ should be $2.9-14 \times 10^{-5} \AA$ and that for $\mathrm{Pd}(\mathrm{dpg})_{2} I$ should be $1.0-6.2 \times$ $10^{-6} \AA$.

Rational Synthesis of Unidimensional Mixed Valence Solids. Structure Oxidation State-Charge Transport Relationships in Iodinated Nickel and Palladium Bisbenzoquinonedioximates [J. Am. Chem. Soc., 101, 2937 (1979)]. By Leo D. Brown, Davida Webster Kalina, Malcolm S. McClure,

Steven Schultz, Stanley L. Ruby, James A. Ibers,* Carl R. Kannewurf,* and Tobin J. Marks,* Department of Chemistry, Department of Electrical Engineering, and the Materials Research Center, Northwestern University, Evanston, Illinois 60201, and the Physics Division, Argonne National Laboratory, Argonne, Illinois 60439.

There are several typographical errors which in no way affect the results or conclusions. In eq $3, h$ should be \hbar.

In Table X , the conducting range for $\mathrm{Ni}(\mathrm{dpg})_{2} \mathrm{I}$ should be $2.3-11 \times 10^{-3}(\Omega \mathrm{~cm})^{-1}$ and L should be $2.9-14 \times 10^{-5} \AA$. The conductivity range for $\mathrm{Pd}(\mathrm{dpg})_{2} I$ should be $7.7-47 \times 10^{-5}$ ($\Omega \mathrm{cm})^{-1}$ and L should be $1.0-6.2 \times 10^{-6} \AA$.

Stereoelectronic Control in the Electrochemical and Mer-cury-Promoted Reductive Acetoxylation of α, α^{\prime}-Dibromobicycloalkanones [J. Am. Chem. Soc., 101, 3927 (1979)]. By Albert J. Fry* and Geoffrey S. Ginsburg, Hall-Atwater Laboratories of Chemistry, Wesleyan University, Middletown, Connecticut 06457.

Page 3928, column 2: The caption to a drawing is in error. The proper placement of numbers is given below:

4a-Hydroperoxyflavin N-Oxidation of Tertiary Amines [J. Am. Chem. Soc., 101, 4017 (1979)]. By Sheldon BaLl and Thomas C. Bruice,* Department of Chemistry, University of California, Santa Barbara, California 93106.

Page 4018; paragraph 2; line 19: 1.25×10^{4} should be 1.25 $\times 10^{2}$ and thus $\beta_{\text {nuc }}=0.54$ not 1.1.

Sterically Induced, Spontaneous Dealkylation of Secondary Alkylcobalamins Due to Axial Base Coordination and Conformational Changes of the Corrin Ligand [J. Am. Chem. Soc., 101, 4601 (1979)]. By JOhn H. Grate and G. N. Schrauzer,* Department of Chemistry, University of California at San Diego, Revelle College, La Jolla, California 92093.

Page 4604, column 2, line 16: "(see Table 11)" should read "(see Table l)".

Page 4605, Table IV: In column 1, row 9 should appear "3-pentylcobinamide".

Page 4607, column 2, line 34: after "rapidly" should appear the superscript " 25 ".

Page 4610, column 1, lines 16, 17: "concentrated" should read "concerted".

Structure and Dynamic Behavior of n-Propyllithium from ${ }^{13} \mathrm{C},{ }^{7} \mathrm{Li}$, and ${ }^{6} \mathrm{Li}$ NMR [J. Am. Chem. Soc., 101, 4745 (1979)]. By Gideon Fraenkel,* Alice M. Fraenkel, Michael J. Geckle, and Frank Schloss, Department of Chemistry, The Ohio State University, Columbus, Ohio 43210.

The penultimate sentence should read: "NMR of organolithium compounds enriched in ${ }^{6} \mathrm{Li}$ and ${ }^{13} \mathrm{C}\left(\right.$ at $\left.\mathrm{C}_{1}\right)$ is by far the superior technique to study structure and dynamic behavior of alkyllithium compounds in solution."

Optical Rotatory Dispersion Studies. 127. Chirality Due to ${ }^{13} \mathrm{C}$ Substitution. Synthesis and Chiroptical Properties of (1S)-2-Adamantanone-4- ${ }^{13} \mathrm{C}$ and (1S)-2,4-Adamantanedione-4- ${ }^{13} \mathrm{C}$ [J. Am. Chem. Soc., 101, 5155-5158 (1979)]. By Y. Lawrence Sing, H. Numan, Hans Wynberg, and Carl DJERASSI, * Department of Chemistry, Stanford University, Stanford, California 94305, and University of Groningen, Groningen, Holland.

The numbering of the compounds beneath the structures of the synthetic scheme (p 5156 , lower left-hand part) is incorrect and should count from 3 to $\mathbf{1 2}$ instead of 2 to 11 . Figure 1 should be replaced in order to reflect the correct formula numbering and the missing octant diagram. The correct figure is given below; the caption is correct.

Evidence of Vibronic State "Selectivity" in the Photoracemization of Tris($\mathbf{1 , 1 0 - p h e n a n t h r o l i n e) c h r o m i u m (I I I) ~ I o n ~ i n ~ S o - ~}$ lution [J. Am. Chem. Soc., 101, 5834 (1979)]. By Roger Sasseville and Cooper H. Langford,* Metals Ions Group, Chemistry Department, Carleton University, Ottawa, K15 5B6 Canada.

In Table I $\phi_{\mathrm{rac}}(\mathrm{CsI})$ should be followed by $\times 10^{3}$ in the heading. As well, \% should be deleted in the quantum yields heading. Moreover, in the list of temperatures, the value of 90 should be replaced by 40 .

